Geometry model of a 3-D Clevis

In this exercise you will create an analytic solid model of a clevis by defining MSC/PATRAN points, curves, surfaces, solids, and a user define coordinate system. Throughout this exercise you will become more familiar with the use of the MSC/PATRAN select menu. Shown below is a drawing of the model you will build and suggested steps for its construction.

Suggested Exercise Steps:

1) Create a new database and name it Clevis.db.
2) Create a surface model of the top half of the clevis as shown in the front view on the right side. Place the center of the hole at $[0,0,0]$.
3) Create solids that represent the first third of the solid model's total width.
4) Create the bottom half of your model by mirroring all of the solids about the y-axis mirror plane located at $\mathrm{y}=0$.
5) Create the remaining solids that represent the last two thirds of your model in the width direction (z-direction).

You have now created all the curves that you will need to complete your clevis model. Next, you will create the necessary surfaces for the model. You will start by creating a 4×2 (in x in) Surface that defines part of the upper half of the clevis body.
a. Create->Surface->XYZ insert value <-4 $\mathbf{2 0} \mathbf{0}$ to define a Vector, and $[-2000]$ to define point of origin and hit -Apply-
The next series of Surfaces will be created using the Curve Method:
b. Create->Surface->Curve, uncheck Auto Execute and select Curve 1 and Curve $\mathbf{2}$ in a Starting Curve List section and Curve $5 \mathbf{6}$ as a Ending and hit -ApplyClick on 略 in the Home/Misc. section to display the lines.

To create the next surface you will use the Select Menu to help you define an existing curve and surface edge as the boundaries of the new surface.
c. Chose Curve $\mathbf{4}$ as a Starting Curve, click ${ }^{[8]}$ and I.click on edge 9-10 of a surface 1 and hit -Apply-
d. Chose Curve 3 as a Starting Curve, click \backslash and I.click on

You will now use the Surfaces you have just created as patterns to define solids (3-dimensional entities)
a. Create->Solid->Normal , insert $\mathbf{0 . 2 5}$ as a Thickness, Uncheck Auto execute
b. Chose all surfaces and click -Apply-

Change the view to Iso $\mathbf{1}$ in Home/Orientation section and Fit view

Creating the lower part of the clevis
a. Transform->Solid->Mirror
b. To Define Mirror Plane Normal click the Coord 0
c. Click on the Frame Direction 2 on the Select Menu to point out the direction of a vector normal to the minor surface.
d. Uncheck Auto Execute, select all solids Solid 1:5 and press -ApplyClick Display Line in Home/Misc. section

Finite Element Model of a
 3-D Clevis and Property Assignment

- Apply a non-uniform mesh seed near a critical location of the model.
- Apply a global mesh to the seeded model.
- Apply material and element properties.

Model Description:

In this exercise you will define a finite element mesh for the Clevis model you developed earlier. You will use mesh seeding to create a refine mesh with a higher mesh density near the bottom of the hole where you will apply a force load in a future exercise.

Suggested Exercise Steps:

1. Database opening / creating a new View Using an isometric view of your model, zoom in on the lower half of the clevis hole. Save this view as a named view. Use the name zoom_in.
2. Create the mesh seeds needed to increase the mesh density in the area where the distributed load will be applied.

3. Create a finite element mesh using the element topology and size listed in the diagram on the right.

Finite Element Mesh

 Global Edge Length $=0.5$HEX8 elements
4. Create an Isotropic material, named Steel which uses a Linear Elastic

Constitutive Model. The Steel's Elastic Modulus and Poisson's Ratio are respectively 30 E6 and 0.30 .
5. Create a 3-D element property named, Solid_Elements_Steel, for the entire includes the steel material definition

1. New View

Assuming that you have already opened dat $\boldsymbol{c}^{\prime}{ }^{2}$: Clevis.db, use the Viewing/ Select Corners option to zoom a model in a specific area.
a. Go to Viewing/Named View Option
b. Create a new View, name it zoom_in and hit -Apply-

To simplify the View you can always hide or display lines by pressing - only model's boundaries are shown.
a Viewing Display Preferences
Transformations...
Fit View
Select Center
Select Corners

Named View Options...
Clipping/Perspective...
Arbitrary Clipping...
b

Named View Options
Current Viewport
default_viewport

Select Named View bottom_view default_view isometric_view side_view top_view zoom in
<

Create New View

```
zoom_in
```


2. Creating mesh seeds

a. Click on Meshing and as fallows: Create->Mesh seed->One Way Bias or just click on
b. Insert 6 as a Number (number of seeds on the curve/edge) and 2 as a L2/L1 which indicates seeds varying size along an edge. Uncheck Auto Execute and holding L.Shift choose the $1^{\text {st }}$ pair of edges shown in figure and press -ApplyDo the same for the $2^{\text {nd }}$ pair of edges but invert the $L 2 / L 1$ to maintain symmetry of the seeds, thus Number: 6, L2/L1: 0.5 and choose $\mathbf{2}^{\text {nd }}$ pair of edges and press -Apply-

> In order to select edge click on in select menu

© Num Elems and L2/L1
L1 and L2
Number $=$
$\mathrm{L} 2 / \mathrm{L} 1=$

3. Creating Mesh

a. Create->Mesh->Solid or simply click on
b. Change element shape to Hex
c. Select all solid parts

d. Uncheck Automatic calculation and insert Value 0.5 and hit -Apply-

Meshers

d

Prop. Name: - None -
Prop. Type: -N/A -

Select Existing Prop..

Create New Property..

Now that you have created your finite element mesh, it is time to determine whether you need to "equivalence the model". To do this:
a. Verify->Element->Boundaries, check the Free Edges and hit -Apply-

As you can see Your model consist of a group of solids residing next to each other in three dimensional space. Since you do not want your model to be in pieces, you must equivalence your model. Equivalencing results in all the nodes coexisting in the same location, to be reduced to the node with the lowest ID number in that location.
b. Equivalence->All->Tolerance Cube, check the Free Edges and -Apply-

You now have one contiguous model of finite elements. To check whether this is true: Repeat the step described in point a. (Your model should looks like the one below at blue background)


```
Finite Elements
\begin{tabular}{ll} 
Action: & Verify - \\
Object: & Element \\
Test: & Boundaries
\end{tabular}
```


Reset Graphics

Node Id Options: Retain lower node id $\quad \nabla$

Collapsed Node Options: Allow Tolerance Reduction

Nodes to be excluded

Equivalencing Tolerance 0.005

Element Boundary Verify
Display Type
© Free Edges OFree Faces

Page 17 of $\mathbf{2 6}$
5. Create a 3-D element property named, Solid_Elements_Steel, or the entire model which includes the steel material definition
a. Properties Create->3D-> Solid insert Solid_Elements_Steel as a Property Set Name
b. Input Properties Click on and choose sooner created Steel and hit $O K$
c. Click on Select Application Region mark whole solid click Add-> OK and -Apply-

Application Region

Element Properties

Options:

Standard Formulation

c

Apply

Loads and Boundary Conditions on a 3-D Clevis

Objectives:

* Apply constraints to your model.
* Create and apply a Pressure

Suggested Steps:

1. Create a Pressure case
2. Create a nodal displacement boundary condition named Clambed
3. Create a Pressure boundary condition

Area under pressure
$P=6900^{*}\left(1-x^{2}\right)$

Model Description:

In this exercise you will create a loading condition and a constraint set for the clevis model. The base of the lug will be
clamped. The hole will be under quadratically varying
pressure $\mathrm{P}=6900$ * $\left(1-\mathrm{x}^{2}\right)$.

Page $\mathbf{2 2}$ of $\mathbf{2 6}$

Post Processing of Stress Results

Objectives:

* To post-process stress results from MSC/NASTRAN
* To use MSC/PATRAN to create fill and fringe plots to determine if the analyzed part will meet a customer defined criteria or whether the part needs to be redesigned and re-analyzed.

Patran 2012.2 64-Bit 25-Mar-1 $401: 39: 31$
Fringe: Default, A1:Static Subcase, Stress Tensor, , von Mises, (NON-LAYERED)

Create 6 different plots with results:

1) Vertical translational displacements in Y direction
2) Von Mises stress $\sigma_{\text {equiv }}$
3) Stress in X direction σ_{x} with averaging, continuous σ_{x}
4) Stress in X direction σ_{x} without averaging, discontinuous σ_{x}
5) Stress in X direction σ_{x} with averaging, continuous σ_{x} for the base of the clevis (2 different views)

Follow the steps (numbers in red frames).

PLOT no. 1
Vertical translational displacements in Y direction

1 Results -> Create -> Quick Plot

9 File -> Images... -> Apply

\square Show Spectrum
\square Show Viewport Legend

PLOT no. 2

Von Mises stress $\sigma_{\text {equiv }}$

Results	
Action:	Create $\boldsymbol{}$
Object:	Quick Plot \quad

1 Results -> Create -> Quick Plot

9 File -> Images... -> Apply

\square Show Spectrum
\square Show Viewport Legend

PLOT no. 3

Stress in X direction σ_{x} with averaging, continuous σ_{x}

1 Results -> Create -> Fringe

9 File -> Images... -> Apply

PLOT no. 4

Stress in X direction σ_{x} without averaging, discontinuous σ_{x}

1 Results -> Create -> Fringe

8 File -> Images... -> Apply

PLOTS: no. 5 and no. 6
Stress in X direction σ_{x}
with averaging, continuous σ_{x} for the base of the clevis (2 different views)

1 Results -> Create -> Fringe

	Loads/BC5 Meshing
7	
	Orientation

9 Click Apply

10 File -> Images... -> Apply

12 File -> Images... -> Apply

Check the value of the displacement in the direction Y of the node located on the lower surface of the hole at the distance 6 [in]:

Reset Graphics

Check the value of the displacement in the direction Y of the node located on the lower surface of the hole at the distance 6 [in]:

Results -> Create -> Cursor -> Vector

this window will appear

After selection of the desired node you will see:
1 Node ID
2 its 3 components of displacement (XX, YY, ZZ)
3 Read value of YY

BEAM

Compare the obtained results from the FE analysis (value of $Y Y$, previous slide) to the deflection of the simple model of the beam.

The beam is fixed at one end and loaded by the same value of force as for the clevis.
The material properties for clevis and beam are the same.

BEAM

1. Calculate the deflection of the beam $\left(f_{\text {beam }}=\cdots\right)$.

Data:
$l=\cdots[$ in $] \quad$ length
$b=\cdots[$ in $] \quad$ width
$h=\cdots[$ in $] \quad$ height
$E=\cdots[p s i]$
$I_{y}=\cdots\left[m^{4}\right]$
$P=\cdots[\mathrm{lbf}] \quad$ resultant load in Y direction (read from the file clevis.f06)
2. Calculate the relative error.
3. Draw conclusions.

Report should also contain:

a) Figures:

1) Geometrical model (1 figure)
2) FE model with load and boundary conditions (1 figure)
3) 6 plots with the results:

- Vertical translational displacements in Y direction
- Von Mises stress $\sigma_{\text {equiv }}$
- Stress in X direction σ_{x} with averaging, continuous σ_{x}
- Stress in X direction σ_{x} without averaging, discontinuous σ_{x}
- Stress in X direction σ_{x} with averaging, continuous σ_{x} for the base of the clevis (2 different views)

Total number of figures $=1+1+6=\underline{8}$

A white background of all figures is obligatory.
A date on the plots with the results is obligatory.
b) Comparison between the obtained results from the FE analysis (value of $Y Y$) and the deflection of the simple model of the beam

- the value of the displacement in the direction Y of the node located on the lower surface of the hole at the distance 6 [in]
- formula for the deflection of the beam ($f_{\text {beam }}=\cdots$)
- data and calculations with proper units
- relative error calculations
c) Conclusions

